Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Curt Wentrup,^a* Jeff Buchanan,^a Karl A. Byriel^b and Colin H. L. Kennard^c

^aReactive Intermediates and Unusual Molecules Group, School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia, ^bCentre for Drug Design and Development, The University of Queensland, Brisbane, Queensland 4072, Australia, and ^cSchool of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia

Correspondence e-mail: c.kennard@uq.edu.au

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.034 wR factor = 0.103 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-Ethyl-1,3-propanedioic (malonic) acid forms a diester, bis(2,4,6-trichlorophenyl) ester, with 2,4,6-trichlorophenol to give the non-planar title compound, $C_{17}H_{10}Cl_6O_4$.

Bis(2,4,6-trichlorophenyl) 2-ethylmalonate

Received 2 December 2003 Accepted 15 December 2003 Online 24 December 2003

Comment

2,4,6-Trichlorophenyl esters of malonic acid, dubbed 'magic malonates', are particularly reactive (Kappe, 1967). Reactions of these esters are often carried out at 423–533 K in the condensed phase. It is possible that the high reactivity is due to aryloxycarbonyl ketene formation, especially in the higher-temperature range. The present paper reports the crystal structure determination for 2-ethylmalonic acid *syn*-bis(2,4,6-trichlorophenyl)ester, (I). The non-planar diester packs in the triclinic space group $P\overline{1}$ with a non-bonding distance of 3.437 (2) Å for Cl2 across the centre of symmetry (Table 1).

Experimental

The synthesis of (I) has been described by Kappe (1967).

Crystal data

$C_{17}H_{10}Cl_6O_4$	Z = 2
$M_r = 490.95$	$D_x = 1.597 \text{ Mg m}^{-3}$
Friclinic, P1	Mo $K\alpha$ radiation
i = 7.648 (3) Å	Cell parameters from 25
b = 8.532 (2) Å	reflections
c = 16.947 (6) Å	$\theta = 10.012.0^{\circ}$
$x = 91.41 \ (2)^{\circ}$	$\mu = 0.86 \text{ mm}^{-1}$
$\beta = 92.98 \ (2)^{\circ}$	T = 293 (2) K
$\gamma = 112.26 \ (2)^{\circ}$	Block, colourless
V = 1020.8 (6) Å ³	$0.20 \times 0.15 \times 0.15 \text{ mm}$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved *ORTEP* plot (Spek, 1988) of (I), with displacement ellipsoids at the 50% probability level.

organic papers

Data collection

Enraf-Nonius CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\rm min} = 0.839, \ T_{\rm max} = 0.879$ 3834 measured reflections 3352 independent reflections 2430 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F²) = 0.103 S = 0.943352 reflections 244 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C1-O1	1.369 (3)	C3-O31	1.190 (3)
O1-C1A	1.384 (3)	C3-O3	1.345 (3)
C2-C3	1.516 (4)	O3-C1B	1.392 (3)
O11-C1-C2	129.1 (2)	O31-C3-C2	127.1 (3)
O1-C1-C2	108.4 (2)	O3-C3-C2	108.9 (2)
C1-O1-C1A	117.8 (2)	C3-O3-C1B	118.4 (2)
C1-C2-C3	108.8 (2)		
C2A-C1A-O1-C1	-101.4(3)	C1-C2-C3-O3	-90.0(3)
C1A-O1-C1-C2	177.8 (2)	C2-C3-O3-C1B	-178.6(2)
O1-C1-C2-C3	163.6 (2)	C3-O3-C1 <i>B</i> -C2 <i>B</i>	-104.3 (3)

 $R_{\rm int}=0.008$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -1 \rightarrow 7$

 $k=-10\to9$

 $l = -20 \rightarrow 20$

3 standard reflections

frequency: 60 min

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0572P)^2]$

+ 0.6749P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

H atoms were treated as riding, with C-H distances in the range 0.93–0.98 Å and $U_{iso}(H)$ values of $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms.

Data collection: SDP (Frenz, 1985); cell refinement: SDP; data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON98 (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Australian Research Council, the University of Queensland and Griffith University for financial support for the purchase of the CAD-4 diffractometer.

References

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Frenz, B. A. (1985). SDP. Enraf-Nonius, Delft, The Netherlands.
- Kappe, T. (1967). Monatsh. Chem. 98, 874-886.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1988). J. Appl. Cryst. 36, 7-13.